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Abstract

The Intelligent Data Management (IDM) project at

NASA/GSFC has prototyped an Intelligent Information

Fusion System (IIFS), which automatically ingests meta-
data from remote sensor observations into a large catalog

which is directly queryable by end-users. The greatest

challenge in the implementation of this catalog has been
supporting spatially-driven searches, where the user has

a possibly complex region of interest and wishes to re-

cover those images that overlap all or simply a part of

that region.

A novel spatial data management system is described,

which is capable of storing and retrieving records of image
data regardless of their source. This system has been

designed and implemented as part of the IIFS catalog.

A new data structure, called a hypercylinder, is central

to the design. The hypercylinder is specifically tailored
for data distributed over the surface of a sphere, such as

satellite observations of the Earth or space. Operations

on the hypercylinder are regulated by two expert systems.

The first governs the ingest of new metadata records, and

maintains the efficiency of the data structure as it grows.
The second translates, plans, and executes users' spatial

queries, performing incremental optimization as partial
query results are returned.

ciplines to quickly recover datasets of interest from the

vast, constantly-expanding archive.

The ability to query or browse large catalogs of im-
age data by the spatial characteristics of desired datasets

is involved in solving what is referred to as the spatial

data handling problem. Whether such a catalog con-

rains downward-looking images of the Earth or outward-

looking images of space, the spatial data structures resi-
dent in the catalog must support two basic spatial search

operations required by the general scientific community

(see Figure 1):

• Window query: given a region of interest, find all
images that overlap the region.

* Containment query: given a region of interest, find

all images that completely contain the region.

There is also a simple case of these queries, whose use
is sometimes convenient:

,, Point query: given a point of interest, find all images

that overlap the point.

In addition, users require the ability to combine the

above operations into more complex spatial queries via
the operators AND, OR, and NOT.

1 Introduction

1.1 Needs of the scientific community

With the planned launching of the Earth Observing Sys-

tem (EOS) platforms and with the continuing generation

of data by existing missions such as the Hubble Space

Telescope (HST), NASA faces one of its greatest chal-

lenges yet: the cataloging of remote-sensor data in a man-
ner that will allow users from a variety of scientific dis-

1.2 Problems with existing approaches

Most attempts at spatial data handling in data cata-
logs encounter major difficulties from the start because

the catalogs are implemented using relational database

(RDB) packages. RDBs generally do not support data

structures for handling anything other than linearly-
ordered records. The. object-oriented database (OODB)

research of recent years provides a means of implementing

spatial data structures directly inside data catalogs, and
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drop in performance during search.

B

A

Figure 1: Images A and B both satisfy a window query

on the shaded region R, but only image B satisfies a con-
tainment query on R.

OODB technology has thus been utilized in implement-

ing the spatial data management system described in this

paper.

Some catalogs circumvent most spatial data handling

problems by virtue of only having to deal with queries in-
volving a single instrument. By using information about

the orbit of the instrument's platform, spatial queries are

mathematically converted into sets of path-row coordi-

nates that specify images satisfying the query, and these

coordinates are used as the search keys for the images.
The problem with this approach is the lack of both ex-

tensibility and flexibility. First, metadata from new plat-
forms and instruments cannot be added without simul-

taneously authoring new spatial-search software. Sec-

ond, images with identical path-row coordinates might
not have identical locations due to fluctuations in the or-

bit of the platform, so a path-row-based spatial query

system may falsely accept or reject images during a query.

Even catalogs that employ robust spatial data handling

techniques encounter difficulties because they actually

treat the globe not as a sphere but as a planar surface, a

consequence of employing spatial data structures that use
latitude-longitude based coordinate systems. The prob-

lem is that the surface of a sphere cannot be mapped

onto a plane without introducing discontinuities and con-

siderable distortion near the poles, as is evident in most

cartographic projections. When using planar spatial data

structures (such as quadtrecs or k-d trees) to represent an
inherently spherical domain, these anomalies present ma-

jor difficulties in query processing and often result in an

"unbalancing" of the data structure, leading to an overall

1.3 The application

The IntelligentData Management group isconducting

researchinto the development of data management sys-

tems that can handle the archivingand querying ofdata

produced by Earth and space missions. Severalunique

challengesdrive the design of these systems, including

the volume ofthe data,the use and interpretationof the

data's temporal, spatial,and spectralcomponents, the

sizeofthe userbase,and the desireforfastresponsetimes.

The IDM group has developed an IntelligentInforma-

tionFusion System (IIFS)for testingapproaches to han-

dlingthe archivingand querying of terabyte-sizedspatial

databases (see Figure 2). Major components of the sys-

tem are the mass storage and itsinteractionswith the

restof the system [Camp91]; the real-timeplanning and

schedulingforprocessingthe data [Short91];the extrac-

tionof metadata and subsequent constructionof fastin-

dicesfororganizingthe data along varioussearchdimen-

sions [Camp89] [Cromp91] [DortD1]; and the overall user
interface.

The IIFS design is novel in a number of areas. Semantic

data-modeling techniques are used to organize the mass
storage system to reduce the transfer times of the data
to on-line devices and the mechanical motions of the sup-

porting robotics. Data percolates from near-line mass

storage to on-line disk storage based upon its frequency
of use. A combination of neural networks and expert sys-

tems defines how metadata is extracted to build up search

indices to the underlying database. The metadata itself is

organized in an object-oriented database which has spe-
cial data structures for representing the multiple views of

the data (such as temporal, spatial, spectral, project, sen-

sor) without resorting to multiple copies of information.
A special data structure that maps directly between the

Earth and a sphere organizes the data for efficient spatial

querying. The user interface is configured dynamically at
run-time depending on the scientist's discipline and the

current knowledge in the object database.

Experimentation with the IIFS design and implemen-

tation have shown that greater flexibility is needed in the

spatial data handling routines so that images with a vari-

ety of coverage and orientation can be uniformly retrieved

with respect to a user's region of interest. The remainder
of the paper discusses the enhancements that have been

made to the IIFS spatial data structures and describes an

overall spatial data handling system that combines declar-

ative and procedural knowledge for efficiently managing

spatial queries.
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Figure 2: The high-level architecture of the Intelligent Information Fusion System.

1.4 A solution

A design for a spatial data structure suitable for a large,

heterogeneous image database with global coverage must

account not only for the goals of Section 1.1, but also

the difficulties introduced by the richness of the remote

sensing domain:

• Multiple image orientations, due both to different
satellite orbits, and because there is no such thing

as "fixed orientation" on the surface of a sphere.

• Multiple image shapes, due to the variety of sensors,
the tilt of the individual spacecraft, and the alter-

ation of the image border by geometric correction.

• Multiple image sizes in terms of the extent of the

image boundaries on the surface of the sphere: e.g.,
sensors mounted on airplanes have smaller fields of

view than similar sensors mounted on orbiting plat-
forms.

The data structure described in this paper, together

with the supporting expert systems for ingest and query-

ing, addresses all these concerns. The result is a spatial

data handling system which can handle NASA's next gen-

eration of image catalogs.

2 Simplifying spatial queries by a

transformation scheme

2.1 The general concept

A variety of spatial data handling problems in complex

spatial domains can be solved by mathematically trans-

forming the domain D into a new domain D' where the

corresponding queries can be handled more efficiently

[Same90, p. 186]. Such transformations map a complex

object in D (in this ease, an image) into a single point in
D': this point is referred to as the object's representative

point. We are then left with the simpler goal of designing
a data structure that can handle the storage and query

of points rather than arbitrary shapes. Two difficulties

with this approach can be encountered:

• A query region R in D must be transformed into

its equivalent /i_ in £F, and R' may be difficult to

generate or to calculate with, even for simple R.

• The transformation may result in some loss of infor-

mation about the stored objects, so that additional

computation may be needed to exactly satisfy a spa-

tim query.

These difficulties are dealt with in Section 4, where the

implementation of the data structure is described.
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Figure 3: The minimal bounding circle of an image on the

globe. Note that the radius is measured along a great-
circle arc, like all distances on the surface of a sphere.
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Figure 4: A portion of D, showing a group of images and
their minimal bounding circles.

2.2 A transformation scheme for image
data

In order to transform images into points, we discard the

actual boundaries of the image and concern ourselves only

with its minimal bounding circle, which we shall call the

representative circle for the image (Figure 3). This is

closely related to the approach taken by [Oost90], which
takes the minimal bounding circles of objects on a planar

surface instead of on a spherical surface. Note that the

"representative circle" approach eliminates the problems

of multiple image shapes and orientations.

By treating images as circles, we are able to describe
every image by only two parameters: the location of the

circle's center, which we shall denote as or, and the radius

of the circle, which we shall denote as p. Thus, every

image can be treated as a simple point (tr, p). Under the
terminology of [Ilinr83], a is the point's location parame-

ter, and p is the point's extension parameter.

2.3 Visualizing the transformation

Consider a part of the globe over which several images

have been taken, shown in Figure 4. For illustration pur-

poses we will show only a small part of the globe so that
it may be rendered as a simple plane, although it must be

stressed that what is actually being shown is a portion of

a curved surface. This would represent a scenario in D.

To map this scenario to D', we compute for each image

I_ the center ai and radius Pi of its minimal bounding

circle, and plot the resulting point (al, p_) in D' as shown

in Figure 5.

To more compactly illustrate what the space of D' looks

like, we must make some diagrammatic simplifications.

Figure 6 shows how the surface of a sphere can be mapped

onto the perimeter of a circle by means of a space-filling
curve. This is a single curve that begins in the diagram at

point A, passes through every point B, C, D, etc. on the

sphere, and eventually returns to A (also labeled Z in the

diagram). The curve places an ordering on the points: A

is before B, B is before C, etc., and this ordering enables

us to place every point on the sphere's surface onto the

perimeter of the circle below. Note that points which are

close to each other on the circle (like B and C) correspond

to points which are close to each other on the sphere.

By using this mapping, the scenario of Figure 5 is de-
picted again in Figure 7. Here, D t is shown as the surface

of a cylinder: the position on the vertical axis represents

the p value, and the position along the circular perimeter

represents the a value.

Since individual sensors can be expected to produce

large numbers of images of the same size, we expect the

distribution of representative points for a large, hetero-

geneous image database not to be uniform, but instead
to be concentrated in different strata along the p axis

(Figure 8).
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Figure 6: How the surface of a sphere (above) can be

mapped onto the perimeter of a circle (below) by using

s space-filling curve A, B,..., Y, Z. For clarity, the curve

on the sphere is not shown in its entirety.

0.20

P

Figure 5: The representative points of the images in Fig-

ure 4, plotted in a portion of/_.

Figure 7: The same representative points as in Figure 5,
this time plotted on a cylinder to represent/T more com-

pactly. Every circular cross-section of this cylinder rep-

resents the entire surface of s sphere (the globe).
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Figure 8: The expected distribution of representative

points in D'. For convenience, p is shown on a logarithmic
scale.
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Figure 9: Criteria for a representative circle to overlap

R. Both circles have the same radius, Pl = P2 = r, but
different locations.

3 Processing queries in the trans-

formed space

3.1 Processing window queries

Given a query region R on a sphere, we note that the

further the center of a circle C is from R, the larger the

radius of C must be if C is to overlap R. Let grow(R, r)
denote the locus of all points that are within a distance

of r from R: read this as "grow R by radius r" A sample

R and grow(R, r) are depicted in Figure 9. We observe:

A representative circle Ci = (ei, P_) overlaps a

region R if and only if its center ai falls inside

grow(R, p_).

This rule is demonstrated in Figure 10, which depicts in

D a query region R, the representative circles for four im-

ages C1... C4, and the region grow(R, pi) for the various

image radii p_. Note that:

* Ol is not inside grow(R, pt), and as is not inside

grow(R, ps). Therefore, neither C1 nor (73 overlap
R.

• _r2 is inside grow(R, p2), and #4 is inside grow(R, p4).
Therefore, both C2 and (74 overlap R.

Now, consider Figure 11. It depicts in LT the represen-

tative points Ci' = {_i,pi) for the images in Figure 10.
For each point the corresponding region grow(R, pi) has

been plotted, on the same cross-section of LF where C__

resides. Notice that, if grow(R, r) had similarly been plot-

ted for all r in p, the regions would trace out a cone-like

solid in IT. In terms of formulating window queries in

IT, this means that:

An image's circle in D overlaps a region R if and

only if its representative point in LT falls within

the cone in IT whose cross-section at p = r is

grow(R, r).

If the region R is a single point p, then this becomes

the definition for a point query, where grow(p, r) is simply
a circle with center s and radius r.

[Sameg0, pp. 187-192] observes that, when employing
transformation schemes which represent stored objects by

points that have distinct location and extension param-
eters, window queries and containment queries generally

produce cone-like search regions. This is also true of the

model described above (Figure 12), and for this reason
we refer to the search regions in D' as search cones.

3.2 Processing containment queries

Up to this point we have dealt with window queries, which

produce cone-like search spaces in D _. A containment

query's search space is also a cone-like region, but differ-

ing in the way a cross-section of the cone is defined for

a given value r of p: instead of its being the locus of all

points p such that anlf point of R is within a radius of r

from p, it is the locus of all points p such that all points of
R are within a radius of r from p. Call this cross-section

cove_(R, r ).
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Figure 10: Four representative circles, as they would appear in D. Also shown are 9row(R, pi) for each circle Ci.

Whereas grow(R, r) isrelativelyeasy to compute even

on a sphere,cover(R,r)ismore complex. But, asitturns

out, we need never compute cover(R,r) directlyto pro-

cessqueries.

To begin, noticethat sincean image with radius z,/2

isa fullhemisphere, we need not concern ourselveswith

images where r > x/2. Itcan be shown that forallr <

_r/2,ifallthe verticesof R axe within a radiusof r from

a givenpointp,then the edges between thoseverticesare

completely withina radiusofr from pointp,and thus all

of R iswithin a radiusof R from pointp. So cover(R,r)

isactuallythe locus of allpoints within a radius of r

from every vertexof R. Therefore,ifR has n vertices,

cover(R, r) is the intersection of n circles of radius r whose

centers are at the vertices of R (Figure 13).

Let R have vertices vx • • • v,,. In terms of containment

queries, this means that:

An image's circle in D completely contains a

region R if and only if its representative point
in D' falls inside all the search cones Sl... S,,,

where the cross-section of Si at p = r is

grow(v_,r).

The search cone for the containment query can thus be
defined as the intersection of n search cones: the search

cones for the point queries on the n vertices of R (Fig-

ure 12).

4 The hypercylinder data struc-

ture

4.1 Design issues arising from implemen-
tation details

At the core of the spatial data handling system is the data
structure that stores and retrieves points in D', named

the hypercylinder because of the shape of the transformed

space. To ensure that it is capable of efficiently processing
queries in D, we must consider factors that place practical

limitations on how the corresponding search regions in D'

can be manipulated.

Although the cross-section of a search cone at a given

value of p is easy to generate, computations involving the

cone itself require a great deal more processing. There-
fore we shall handle queries by dividing the search cones

into cross-sections that may be dealt with individually

(Figure 11 provides an illustration of "slices" of a search
cone). The ramification for the data structure is that

D' must be represented internally as a collection of slices

that can be queried independently.

Since we must still compute cross-sections for each slice

of the data structure, we need to divide D' into a man-

ageable number of slices. If slices are infinitely thin (i.e.,

the data points in a given slice all have the same p value),
then even small variations in the extents of images will

result in a need for a large number of slices. We thus let

each slice cover a range of p values.

Toexecute a query (Figure 14), we handle one slice
of the search cone at a time, and then merge the results

together to form the final result. For each slice, we corn-
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0.10 = P2

0.20 = P3

0.30 = P4

Figure 11: The representative points for the circles in Figure 10, as they would appear in D'. Also shown are

grotv( R, pi) for each circle Ci I.
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Point query Window query Containment query
on p on R on R

Figure 12: The search cones (shaded) in D' for a point query, window query, and containment query. Notice that
the search cone for the containment query is the intersection of four search cones for point queries.

2 jf'_ f ........,_. "_;....... _..... \
/ ,/\ _: _,i" \ ......,_.

• _ ".,.

t\

R cover(R, r)

Figure 13: A region R and cover(R, r). Any circle of radius r in cover(R, r) will overlap all points in R.
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O"

edge of search cone

interior boundary exterior boundary

p

_ Search cone (points satisfy que_'y)w_ch
]Points in slice which definitely satisfy qum'y

_ Points in slice which pou_bly satisfy query

[] Points in slice which definitely do not satisfy query

Figure 14: Slicing up D _, and approximating the portion of a search cone inside the slice from p : s to p : t. By

computing the interior and exterior boundaries of the search cone in that slice, we can divide the points in that slice

into three groups - those that definitely satisfy, possibly satisfy, and definitely do not satisfy the query.
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I 2 3 4

4

Figure 15: The hypercylinder data structure. Square nodes belong to the BST for p, circular nodes belong to the

SQTs for or, white nodes are internal nodes, and black nodes are leaf nodes. A close-up of one slice is depicted, with

n leaf nodes in its SQT. Also shown is how some of the SQT leaf nodes (numbered) might look if the surface of the

slice were "unrolled" (bottom), and how the corresponding trixels might look on the surface of a sphere (right).
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pute two cross-sections of the query's search cone: one
where the cone passes through the top of the slice, and

one where it passes through the bottom of the slice. These

two cross-sections give us, respectively, the interior and

exterior boundaries of the search cone as it passes through
the slice. We observe that:

• Data points from inside the interior boundary are

definitely inside the search cone.

• Data points from between the interior and exterior
boundaries are possibly inside the search cone, and
must be tested on an individual basis.

• Data points outside the exterior boundary are defi-
nitely outside the search cone.

Notice that the thicker the slice, the greater the dif-

ference between the interior and exterior boundaries, and

hence the more data points we can expect to have to test

in this region - which we shall call the "possibly-satisfy"
region - during a query. To maximize query efficiency, we

must slice up the hypercylinder so that areas of D' with
many data points are sliced thin, while areas of D' with

very few data points may be covered by thick slices since

fewer points will need to be tested in those areas. As

revealed in Figure 8, we expect the representative points

for images to be largely concentrated in different "strata"
of D'. Unfortunately we cannot predict where all such

strata will eventually lie, due to the continuous launching

of new sources of image data.

As the number of points within a slice grows, eventu-
ally the density of points within that slice is such that ex-

cessive time is spent deciding whether to accept a point

within the "possibly-satisfy" region. At this time, the

slice must be split so that the collection of points within

the subslices is more homogeneous. A heuristic approach

to recognizing when this division should occur and where
the division should be made is given in Section 5.1.

4.2 The data structure design

For an overview of the hypercylinder's design, refer to

Figure 15. The top-level view is a binary search tree

(BST), whose branches discriminate between values of p
and whose leaves are the slices of D I. The data struc-

ture at each leaf is a sphere quadtree (SQT) [Feke84]
[Feke90], a special variation of a quadtree designed for

storing and retrieving points distributed on the surface of

a sphere. The branches of a SQT discriminate between

values of a and the leaves represent triangular regions of

the globe (Figure 16). The representative points of im-

ages are stored in the leaves of each SQT.

The sphere quadtree is a unique data structure in

that it models the globe without introducing distortions

Level 0 Level 2

1 velLevel 3

Figure 16: How a sphere quadtree divides the globe into

triangular patches (called trixels). The higher the level
number of a trixel, the deeper in the tree it is, and the
smaller the area it covers.

or discontinuities, as other approaches such at latitude-

longitude based schemes do (see Section 1.2). Conceptu-

ally, it divides the sphere into twenty identical equilateral

triangles called trixels, where each trixel is a "bucket" for
data points. When a trixel reaches its threshold num-

ber of data points, it is split into four nearly equal-area

subtrixels. This subdivision is called refinement since it

produces smaller trixels which, like the pixels in an im-

age, can represent regions to a higher degree of resolu-

tion. As with most spatial data structures, refinement in

a SQT can continue indefinitely: the result is that areas

of the globe that are densely populated are more refined,

so query regions in those areas are more accurately rep-
resented by the higher resolution trixels in the SQT.

Since satellite orbits generally provide global coverage,

we expect the SQT for each slice to be fairly equally re-
fined over most of the surface of the globe, i.e., the SQT

is well balanced, and so spatial queries are handled with

similar efficiency regardless of their location. But since

satellite orbital paths are often designed to produce fully-

overlapping images at each pass over a location, a clus-

tering of the representative points occurs and results in
a tree that is globally well-balanced, but locally unbal-

anced. A means for overcoming this problem exists, and
is discussed in Section 7.1.

To ensure that the slices are split in an optimal man-
ner when they achieve their threshold number of data

points, a profile of how the data points are distributed

in each slice is maintained. These profiles are used as
heuristic devices to determine where the slices should be
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subdivided.Their actual implementation is described in
Section 5.1.

5 A spatial data management

system

The primary motivation for designing an entire spatial

data management system for the remote sensing domain,
as opposed to just the custom-tailored spatial data struc-

ture described above, is that domain knowledge can often

be employed to improve the overall performance of any
data management scheme. For a remote-sensing catalog,

such knowledge encompasses:

• Model information: what real-world entities and con-

cepts (observations, sensors, geographic regions, sci-

entific parameters, classification schema) are repre-

sented in the catalog, and what sorts of questions

may be asked about them by end-users. This is
mostly declarative information, intended for use by

both the end-users and the system. It allows the

users to ask the system about its contents, and it en-

ables the system to translate users' natural-language

and graphical queries into the system's internal rep-
resentation.

• Data structure information: what data structures

(e.g., the hypercylinder) exist in the database, under

what conditions they should be used (e.g., spatial

queries), and how data is distributed in them (e.g.,

the profiles mentioned in Section 4.2). This proce-

dural and declarative metaknowledge is used by the

catalog to construct plans for queries, to generate
the necessary calls to the catalog's underlying data.

base management system, and to optimize the query
plans as intermediate results are returned.

• Operational information: the performance of the
hardware devices over which the database is dis-

tributed, the anticipated system loads over the

course of a typical day or week, the types of queries

most frequently made, etc. This is largely declara-

tive information, used by the catalog in performing a
variety of tasks ranging from query optimization to

automatic data structure reorganization.

The spatial data management system makes use of such

information in its two supporting expert systems: the

Spatial Ingest Expert System and the Spatial Query Ex-
pert System, both of which are discussed below.

5.1 The Spatial Ingest Expert System

(SIES)

The primary function of the SIES is to govern the splitting

of the slices of the hypercylinder, ensuring that each slice

is divided so that dense strata of 19' end up in thin slices,

with thick slices covering the sparser expanses of D'. As

mentioned in Section 4.2, each slice maintains a profile of

the current distribution of the data points in the slice. In

addition to this, the SIES incorporates information about

the expected future distribution of points. Both provide

a heuristic means of optimizing the hypercylinder as it is

being built.
The primary requirements for profiles are that they

must be easy to update during ingest, be implemented to

allow rapid calculation during splitting, be large enough

to adequately capture the distribution of points in a slice,

and be small enough not to incur a large storage overhead.
We have experimented with an approach based on incre-

mental sampling of the representative points as they are

stored in the slice: the profile consists of a small reservoir

of the p values of sampled points, and as each new point

is ingested there is a chance that one of the current ele-
ments of the reservoir will be replaced by the p value of

the new point. During splitting, the profile is analyzed

to determine where the p values are clustered, indicating

emerging strata in D'.

The profiles are supplemented in the knowledge base

by the bias list: a list of strata into which D' is expected
to be organized. The bias list is updated whenever a

new instrument is added to the knowledge base, and con-
tains the expected minimum and maximum radii of im-

ages that the instrument will generate plus an estimate

of how many images will be generated over the lifetime

of the instrument. Although the bias list can supply in-

formation on where a slice is best split (or even whether
to defer splitting a slice), its contents do not reflect the
actual state of the data structure, and thus neither it nor

the profiles are expected to provide maximal performance
in isolation.

The hypercylinder initially consists of a single slice cov-

ering all of p. When the number of points stored in any

slice reaches the threshold value for splitting, a strategy

for dividing the slice is formulated from one of several
alternatives, such as:

• Place the largest cluster into its own slice, and the
spaces to either side of this cluster into two additional

slices (Figure 17).

• Place the largest expanse of sparsely-populated space
into its own slice, and the spaces to either side of it
into two additional slices.

• Given an entry in the bias list whose minimum and
maximum radii fall within the slice and whose esti-
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Figure 17: One strategy for splitting a slice, based on the distribution of points in the slice: this "fences in" the

largest cluster of points, putting it into its own slice.
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Figure 18: How non-spatialcomponents of a query can place implicitspatialconstraints.Only the shaded layersof

the hypercylindermust be searched.
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mated number of images is high, place that range of
values into its own slice and the spaces to either side

of it into two additional slices.

* Split the slice so that equal numbers of points are in
each subslice.

The strategy chosen depends on factors such as how
definite the clusters are, how widely they are distributed,

and whether one cluster is significantly larger than the

others. Each fact lends weight to one or more of the

strategies during selection: these weights are then ad-

justed as more is learned about the performance of the
SIES under the real-world environment.

5.2 The Spatial Query Expert System

(SQES)

The SQES is actually a conceptual subset of the larger

Query Processing Expert System, a mostly-procedural-

knowledge base whose content is the model and data
structure information described in Section 5, and whose

purpose is the translation, optimization, and execution of

user queries. The SQES handles those parts of the task

that relate to spatial searches.

The first place the SQES is invoked is during the pars-

ing of queries with symbolic spatial components. In

natural-language and menu-driven queries, such compo-

nents might appear as the names of geographic, political,

or climatological regions on the Earth (or as the names of
stellar objects or constellations, depending on the catalog

type). The SQES translates these terms into geometric
region descriptions, possibly invoking external informa-

tion sources in the process, such as databases that house

geopolitical boundaries, or that store the names of as-

tronomical entities under different labelling schemes to

allow translation from one scheme to another (e.g. the

SIMBAD database).

Figure 18 shows how the SQES can optimize the spatial

search by inferring additional spatial constraints from the

user's query. The user's specification of desired ranges of

image resolution and spectral bands constrains the set of
instruments that might be sources of the desired data,

which in turn limits the possible sizes of images that can
be returned from the user's query, which in turn pin-

points the only slices of the hypercylinder that need to
be searched.

The SQES also assists in planning complex spatial

queries, where the order in which subparts of the query
are executed can play a dramatic role in decreasing pro-

cessing time. Consider the processing of a containment

query: as noted above, containment queries are best han-

dled as the intersection of a collection of point queries.

Throughout the system, computing the intersection of a

Figure 19: Tile profile used by the SQES. Darker trixels
indicate that observations are more dense ill those por-

tions (,f the globe.

group of unknown sets is performed in a strategic man-
ner: tile members of the group are retrieved sequentially,

from smallest to largest estimated size, and the most re-

cently retrieved set is intersected with a running "result"
set. The system stops and returns the empty set as lhe

result of the intersection if any of the retrieved sets is the

empty set.
To allow the SQES to estimate the relative siz(_s of sets

returned by the components of a spatial query, yet an-

other profile is kept in the knowledge base. Wherea.s the

previously-discussed profiles represent the distributions of

the image radii, this new profile represents the distribu-
tion of the image centers on the globe, giving in effect, the

"density" of observations around the surface of the globe.

Since it associates spherical locations with density values,

this profile is implemented as a small spherical quadtree

(Figure 19). When the SQES is confronted with a set of
query regions that must be ordered by expected content,

the area of each region is computed and multiplied by its

average density from the profile to produce an estimate
of the number of data points in the entire region, and it

is by this estimate that processing order is determined.
We intend to install similar profile-based approaches for

aiding the construction of query plans on top of all the

catalog's principle data structures.

6 Results

The spatial data handling system has been tested using

a portion of the metadata stored in the Pilot Land Data
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System(PLDS)catalog.Approximately 3,000 records of

TM, MSS and AVHRR metadata were ingested from a
flat file into the hypercylinder's SIES via a C program

which extracted the appropriate fields for each image's

location, boundaries, and primary key. To assess the per-
formance and extendability of the SIES under different

implementation languages, it was written both in Quintus

Prolog and in CLIPS, an expert system shell developed

by NASA's Johnson Space Center and capable of being

linked into a C program and accessed via simple function

calls. The SIES sends the appropriate ingest requests

to the hypercylinder "server": a C++ program contain-

ing the hypercylinder data structure, accessible through a
TCP/IP socket on a Sun-4. All of the spatial search rou-

tines, as well as the profiles for the hypercylinder's slices,

were implemented in C++ and reside in the server. Query •
requests are sent to the SQES, a CLIPS/C module that

uses a small, array-based version of the SQT (called a

linear SQT_ to store the SQES profile. The SQES per-

forms the necessary query planning and sends the various

partial spatial query requests to the hypercylinder server,
which keeps track of execution times for various tasks.

The spherical quadtree components of the system and

the supporting spherical geometry routines have been im-

plemented and tested independently inside the IIFS cat-

alog's database. The catalog uses the Smalltalk-based

GemStone DBMS, a commercial object-oriented DBMS •

available from Servio Logic Corporation, which is capa-
ble of invoking external C and C++ functions.

The rationale for initially implementing the full hy-
percylinder as an in-core data structure rather than in-

side the catalog database was twofold. First, it enabled

us to seamlessly integrate the hypercylinder with the

C++ spherical geometry objects (such as query regions)
and routines (such as grow()) necessary for spatial query

handling. We found C++ to be an excellent program-

ruing platform for rapid data structure prototyping, and
are currently using Oregon C++ from Oregon Software, •
which conforms to the base ANSI documents for this lan-

guage and thus should produce highly portable code. Sec-

ond, initial implementation and testing in core enabled

us to take CPU-time measurements without concerning
ourselves with the I/O and CPU overhead that would be

introduced by interfacing with a DBMS.

The grow() routine performed well for any given radius: •

the algorithm is O(n), where the inputs are the n vertices
of the query region R and a radius of expansion r, and the

outputs are the m vertices of grow(R,r), where n < m <
cn for a predefined constant c. Unfortunately, the grown

query region is almost always self-overlapping, and some •

necessary computations (such as determining whether a

point is inside grow(R,r)) take O(n 2) to process using

our current algorithms. Removing the self-intersections

from a spherical region appears to be an O(n _) operation

in the best case: we are therefore focusing our attentions
on developing more efficient algorithms for manipulating

the self-overlapping regions.

7 Future research

7.1 The hypercylinder

The hypercylinder data structure, designed to meet strin-

gent ingest and query requirements for large image cata-

logs, is nevertheless only one possible data structure and

is specifically designed for image data. We hope in the
near future to:

Produce additional spatial data structures cus-

tomized for efficient storage and retrieval of other
types of observations, such as observations in atmo-

spheric domains with additional spatial search crite-
ria such as "altitude."

Implement these data structures fully inside the cat-

alog's database, ensuring that the hypercylinder's

components are clustered so as to minimize page

faults during tree traversal.

Introduce tree compression techniques for the SQTs,

as per [Ohsa83], to eliminate the clustering problem
mentioned in Section 4.2.

7.2 The Spatial Ingest Expert System

In future implementations, we plan to expand the role of

the SIES in the spatial data ingest process. The SIES will
be empowered to:

Periodically survey the data structure for conditions

that would compromise efficiency, such as tree imbal-

ance. If such conditions are detected, the SIES must

determine how best to reorganize the data structure,

and notify the database administrator (DBA) of the
problem.

Estimate the amount of system resources that a re-

optimizing step will take, and, based on profiles of
system loads, suggest to the DBA the best times for
self-correction.

Maintain a history of major decisions affecting the
data structure: when a slice was split and why, when

the data structure had to be reoptimized and why,
etc. Alert the DBA if it is determined that some

subset of the rules has contributed to poor decisions.
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7.3 The Spatial Query Expert System

Much of the spatial query optimization is intended to be

handled by the catalog's proposed Query Planning and

Execution Module (QPEM), in which the SQES knowl-
edge will reside. However, there are still spatial search

strategies unique to the SQES that have yet to be ex-

plored:

• Transfer more spatial query processing control from

the hypercylinder to the SQES. This would involve

maintaining a collection of density profiles, each cov-

ering a different slice of the hypercylinder. Spatial

queries would be handled and optimized indepen-

dently by each slice of the hypercylinder, based on

local profile information.

• Allow the user to specify different levels of spatial

query processing. Since many stages of query pro-

cessing in the data structure divide the tree into three

types of branches - definitely satisfies query, possibly
satisfies query, and definitely does not satisfy query

- the user can be given the power to trade precision

for execution time by deciding to either accept, re-

ject, or vigorously test the "possibly satisfies query"
branch.

8 Summary and conclusions

The research presented in this paper is intended to serve

as the foundation for a new generation of spatial data

management systems at NASA, tailored for the general

remote-sensing domain and robust enough to support ef-

ficient spatial searches regardless of the shape or location
of the user's area of interest.

The hypercylinder's two controlling expert systems, the

SIES and the SQES, are as necessary as they are novel.

By using rule firings in a supervisory expert system to

activate data management tasks, the conditions under

which different data management strategies are employed

can be easily monitored, evaluated, and altered to fine-
tune system performance. This is a major step beyond

conventional catalog schemes, where inspection and eval-
uation of the underlying data structures are at best ex-

tremely difficult, and adjustment of the associated algo-

rithms is traditionally impossible without down-time for

code recompilation.
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